Description
探索感官資料:深入市場資料科學
針對商品感官屬性的評分資料,介紹分析方法與視覺化討論的技巧。
感官資料有各式各樣的形態,除了量化數字,還有質性文字,本書將以量化數字為主軸,透過多變量方法的應用與視覺化技術,來回答:最受消費者喜歡的是哪些特性?現行商品符合市場需求嗎?
本書寫作為完整的資料導向,涵蓋推薦系統和消費者與專家品鑑兩類資料的形狀與特性,實做上則以R 套件SensoMineR 完成分析為重點。每章開場皆以詳述特定的資料結構為鋪陳,希望透過認識資料(know your data)深入感官資料分析的方法。
第一章是基於消費的採購行為所做的關聯推論,也是第二章品鑑資料的基礎。第三章則是稍微特殊一點的感官資料,也就是對商品屬性的專業品鑑,分別針對專業品鑑者(panelists)和商品的多種屬性作系統性分析。第四、五章為「商品角度的感官評分:單維度以及多重的屬性清單」。最後一章則是分析現今最流行的「按讚」行為,從中分析出消費者的偏好。
目錄序
第一章 推薦演算之一:關聯規則與購物籃分析
第一節 交易記錄資料與基礎測量
第二節 關聯規則演算法之一:Apriori
第三節 其他方法
第二章 推薦演算之二:評分資料分析Real Rating
第一節 Real Rating 資料處理
第二節 協同演算法Collaborative Filtering
第三章 感官資料量化分析:ANOVA 方法
第一節 品鑑者角度的感官品鑑:單維度屬性清單
第二節 ANOVA 之一:使用panelperf()
第三節 ANOVA 之二:使用paneliperf()
第四章 商品角度的感官評分之一:單維度屬性清單
第一節 資料
第二節 主成分方法簡介
第三節 adjmean 的主成分分析
第四節 集群分析方法
第五節 adjmean 的集群分析之一:階層式集群樹狀圖
第六節 adjmean 的集群分析之二:K-means 方法
第五章 商品角度的感官評分之二:屬性的多重清單
第一節 利用MFA 建構商品空間
第二節 從Group 角度的整合與詮釋
第三節 資料練習—酒的感官饗宴
第六章 大家一起來按讚:消費者品鑑
第一節 享樂分數資料分析
第二節 當消費者喜好Liking 遇到專家評分Rating
第三節 消費者接受性分析之一:JAR 資料
第四節 消費者接受性分析之二:IPM 資料
书名简译:探索感官资料:深入市场资料科学
目前沒有評價。